Remote monitoring of cardiorespiratory signals from a hovering unmanned aerial vehicle

نویسندگان

  • Ali Al-Naji
  • Asanka G Perera
  • Javaan Chahl
چکیده

BACKGROUND Remote physiological measurement might be very useful for biomedical diagnostics and monitoring. This study presents an efficient method for remotely measuring heart rate and respiratory rate from video captured by a hovering unmanned aerial vehicle (UVA). The proposed method estimates heart rate and respiratory rate based on the acquired signals obtained from video-photoplethysmography that are synchronous with cardiorespiratory activity. METHODS Since the PPG signal is highly affected by the noise variations (illumination variations, subject's motions and camera movement), we have used advanced signal processing techniques, including complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and canonical correlation analysis (CCA) to remove noise under these assumptions. RESULTS To evaluate the performance and effectiveness of the proposed method, a set of experiments were performed on 15 healthy volunteers in a front-facing position involving motion resulting from both the subject and the UAV under different scenarios and different lighting conditions. CONCLUSION The experimental results demonstrated that the proposed system with and without the magnification process achieves robust and accurate readings and have significant correlations compared to a standard pulse oximeter and Piezo respiratory belt. Also, the squared correlation coefficient, root mean square error, and mean error rate yielded by the proposed method with and without the magnification process were significantly better than the state-of-the-art methodologies, including independent component analysis (ICA) and principal component analysis (PCA).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-Trim Flight Investigations of a Conceptual Fluidic Thrust-Vectored Unmanned Tail-Sitter Aircraft

The feasibility of using a stand alone Fluidic Thrust-Vectoring (FTV) system for the purpose of longitudinal trim of an unmanned aerial vehicle is the focus of the research presented in this paper. Since the fluidic thrust vectoring requires high pressure secondary air to deflect the engine exhaust gases, this research also provides an analytical toolset for preliminary sizing of a suitable sec...

متن کامل

Motion Control of TUAV having Eight Rotors for Enhanced Situational Awareness

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for tactical unmanned aerial vehicle (TUAV). With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory...

متن کامل

Comparison of Small Unmanned Aerial Vehicles Performance Using Image Processing

Precision agriculture is a farm management technology that involves sensing and then responding to the observed variability in the field. Remote sensing is one of the tools of precision agriculture. The emergence of small unmanned aerial vehicles (sUAV) have paved the way to accessible remote sensing tools for farmers. This paper describes the development of an image processing approach to comp...

متن کامل

Heavy Payload Tethered Hexaroters for Agricultural Applications: Power Supply Design

---------------------------------------------------------------------***--------------------------------------------------------------------Abstract This research paper addresses the design problem of heavy payload tethered hexarotor for agricultural applications where payload requirements are high, low altitude long time hovering is expected. Tethered hexarotors are unmanned aerial vehicles wi...

متن کامل

Low-Cost Visual Tracking of a Landing Place and Hovering Flight Control with a Microcontroller

The growth of civil and military use has recently promoted the development of unmanned miniature aerial vehicles dedicated to surveillance tasks. These flying vehicles are often capable of carrying only a few dozen gramms of payload. To achieve autonomy for this kind of aircraft novel sensors are required, which need to cope with strictly limited onboard processing power. One of the key aspects...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017